Environment and Ecology

environment - ecology - nature - habitat - gaia - permaculture - systems - sustainability ...

  • Increase font size
  • Default font size
  • Decrease font size
Home Biodiversity What is biodiversity?

What is biodiversity?

E-mail Print PDF

 What is biodiversity?

  • Biodiversity is the variability among living organisms from all sources, including terrestrial, marine, and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species, and of ecosystems.
  • Biodiversity forms the foundation of the vast array of ecosystem services that critically contribute to human well-being.
  • Biodiversity is important in human-managed as well as natural ecosystems.
  • Decisions humans make that influence biodiversity affect the well-being of themselves and others.

Biodiversity is the foundation of ecosystem services to which human well-being is intimately linked. No feature of Earth is more complex, dynamic, and varied than the layer of living organisms that occupy its surfaces and its seas, and no feature is experiencing more dramatic change at the hands of humans than this extraordinary, singularly unique feature of Earth. This layer of living organisms—the biosphere—through the collective metabolic activities of its innumerable plants, animals, and microbes physically and chemically unites the atmosphere, geosphere, and hydrosphere into one environmental system within which millions of species, including humans, have thrived. Breathable air, potable water, fertile soils, productive lands, bountiful seas, the equitable climate of Earth’s recent history, and other ecosystem services (see Box 1.1 and Key Question 2) are manifestations of the workings of life. It follows that large-scale human influences over this biota have tremendous impacts on human well-being. It also follows that the nature of these impacts, good or bad, is within the power of humans to influence (CF2).

Defining Biodiversity

Biodiversity is defined as “the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems.” The importance of this definition is that it draws attention to the many dimensions of biodiversity. It explicitly recognizes that every biota can be characterized by its taxonomic, ecological, and genetic diversity and that the way these dimensions of diversity vary over space and time is a key feature of biodiversity. Thus only a multidimensional assessment of biodiversity can provide insights into the relationship between changes in biodiversity and changes in ecosystem functioning and ecosystem services (CF2).

Biodiversity includes all ecosystems—managed or unmanaged. Sometimes biodiversity is presumed to be a relevant feature of only unmanaged ecosystems, such as wildlands, nature preserves, or national parks. This is incorrect. Managed systems—be they planta­tions, farms, croplands, aquaculture sites, rangelands, or even urban parks and urban ecosystems—have their own biodiversity. Given that cultivated systems alone now account for more than 24% of Earth’s terrestrial surface, it is critical that any decision concerning biodiversity or ecosystem services address the maintenance of biodi­versity in these largely anthropogenic systems (C26.1).

Measuring Biodiversity: Species Richness and Indicators

In spite of many tools and data sources, biodiversity remains difficult to quantify precisely. But precise answers are seldom needed to devise an effective understanding of where biodiversity is, how it is changing over space and time, the drivers responsible for such change, the consequences of such change for ecosystem services and human well-being, and the response options available. Ideally, to assess the conditions and trends of biodiversity either globally or sub-globally, it is necessary to measure the abundance of all organisms over space and time, using taxonomy (such as the number of species), functional traits (for example, the ecological type such as nitrogen-fixing plants like legumes versus non-nitrogen-fixing plants), and the interactions among species that affect their dynamics and function (predation, parasitism, compe­tition, and facilitation such as pollination, for instance, and how strongly such interactions affect ecosystems). Even more important would be to estimate turnover of biodiversity, not just point estimates in space or time. Currently, it is not possible to do this with much accuracy because the data are lacking. Even for the taxonomic component of biodiversity, where information is the best, considerable uncertainty remains about the true extent and changes in taxonomic diversity (C4).

There are many measures of biodiversity; species richness (the number of species in a given area) represents a single but important metric that is valuable as the common currency of the diversity of life—but it must be integrated with other metrics to fully capture biodiversity. Because the multidimensionality of biodiversity poses formidable challenges to its measurement, a variety of surrogate or proxy measures are often used. These include the species richness of specific taxa, the number of distinct plant functional types (such as grasses, forbs, bushes, or trees), or the diversity of distinct gene sequences in a sample of microbial DNA taken from the soil. Species- or other taxon-based measures of biodiversity, however, rarely capture key attributes such as variability, function, quantity, and distribution—all of which provide insight into the roles of biodiversity. (See Box 1.2)

Ecological indicators are scientific constructs that use quantitative data to measure aspects of biodiversity, ecosystem condition, services, or drivers of change, but no single ecological indicator captures all the dimensions of biodiversity (C2.2.4). (See Box 1.3) Ecological indicators form a critical component of monitoring, assessment, and decision-making and are designed to communicate information quickly and easily to policy-makers. In a similar manner, economic indicators such as GDP are highly influential and well understood by decision-makers. Some environmental indicators, such as global mean temperature and atmospheric CO2 concentrations, are becoming widely accepted as measures of anthropogenic effects on global climate. Ecological indicators are founded on much the same principles and therefore carry with them similar pros and cons (C2.2.4). (See Box 1.4)."

 

Choose Language


The GURUS & ACTIVISTS